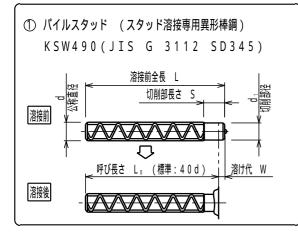
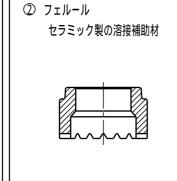
Ver.20200917

- 既製コンクリート杭の杭頭接合技術 -パイルスタッド工法 設計・施工 標準図

(一財)日本建築センターによる建設技術審査証明(2020年度版) BCJ-審査証明-7


パイルスタッド工法研究会


C J - 番貸証明 - / 日本スタットウェルティンク株式会社 株式会社大谷工業 岡部株式会社

1.パイルスタッド工法概要

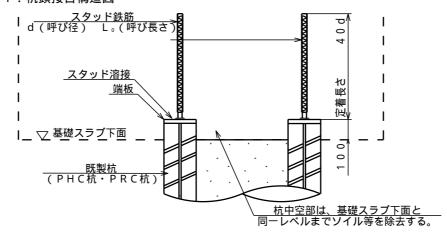
パイルスタッド工法は、溶接性に優れた異形棒鋼KSW490を杭頭端板に直接スタッド溶接することにより、抗体に悪影響を及ぼすことがなく、抗体と基礎スラブとを接合する技術である。

2.使用材料

パイルスタッドおよびフェルールの種類 (括弧内の寸法は、標準の呼び長さ40dの場合)

<u>バールバックーののひとれ ルの住祭 (10mm100 17418、18年の前 0 段と 中 0 0 0 30 1</u>									
サイズ	呼び名	各部寸法				適用フェルール*			
917	*10-8	d ₁	L	W	S	岡部(株)	(株)大谷工業	日本スタッドウェルディング(株)	
D13	D13 L ₀ (520)	13.0	L ₀ +6 (526)	2 ~ 6	1 8	A - 13	D - 13	100-101-114	
D 1 6	D16 L ₀ (640)	16.0	L ₀ +6(646)	2 ~ 6	2 0	A - 16	D - 16	100-101-012	
D 1 9	D19 L ₀ (760)	19.1	L ₀ +7(767)	3 ~ 7	2 8	A - 19	D - 19	100-101-152	
D 2 2	D22 L ₀ (880)	22.2	L ₀ +7(887)	3~7	3 0	A - 22	D - 22	100-101-140	
D 2 5	D25 L ₀ (1000)	25.4	L ₀ +9(1009)	5 ~ 9	3 7	A - 25	D - 25	100-101-045	

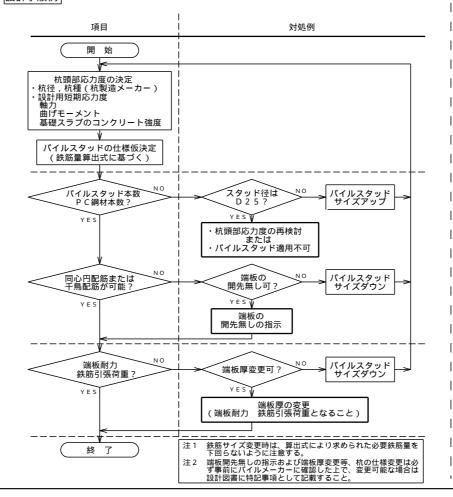
スタッドメーカーとフェルールの組合せは限定しない


パイルスタッド(KSW490)の化学成分および機械的性質

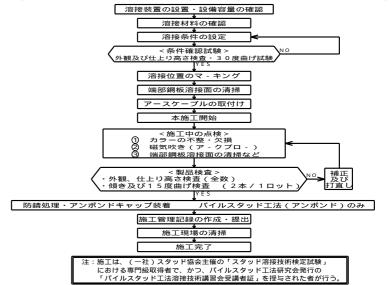
		機械的性質						
С	Si	Mn	Р	S	C + M n / 6	降伏点 (N / mm²)	引張強さ (N/mm²)	伸び (%)
0.20以下	0.15 ~0.35	0.30 ~0.90	0.035以下	0.035以下	0.35以下	3 4 5 ~ 4 4 0	490以上	2 0 以上

3. 杭頭接合仕様

	杭仕様			ルスタット	・仕様	備考
杭径	杭種	杭本数	鉄筋径	呼び長さ	本 / 1 杭	備で


4 . 杭頭接合構造図

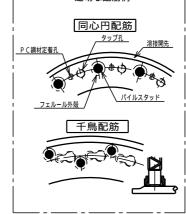
5.設計に関する考え方の一例

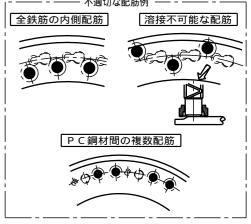

下図設計手順例は、適用にあたっての一つの参考例であり、構造設計者の考え方に基づく 適切な設計法により杭頭接合鉄筋量を算出することが望ましい。 詳細は、本工法建設技術審査証明(建築技術)報告書付録による。

設計手順例

6 . パイルスタッド工法 標準施工フロー

(詳細は、本工法建設技術審査証明(建築技術)報告書の「施工要領」による)


7.製品検査規定


頻度	検査項目	検査方法	判定基準		
全数検査	外観検査	目視	カラーが軸部全周に包囲して、アンダーカットの無いこと		
	仕上り高さ	ゲージ等による	設計寸法 - 0 mm ~ + 4 mm		
抜取検査	傾き検査	ゲージ等による	5°		
	曲げ検査	パイプ曲げ等による	溶接部に割れなどの欠陥が生じないこと		

8.パイルスタッドの配筋規定

(詳細は、本工法建設技術審査証明(建築技術)報告書付録の「配置計画」による)

- 1) フェルール外殻が端板の開先やPC鋼材孔と重ならない位置に溶接する。
- 2) PC鋼材径と同心円上の位置への配筋を基本とする。(同心円配筋)
- 3) 同心円配筋ができない程PC鋼材間が狭隘な場合、フェルールをPC鋼材孔の 同心円上の外側、内側と交互に配筋する。(千鳥配筋)
- 4) 杭当たりの配筋本数は、6本以上かつPC鋼材本数以下を原則とする。
- 5) PC鋼材孔間に2本以上配筋しないことを原則とする。
- 6) パイルスタッドのあきは、基礎スラブコンクリート粗骨材最大寸法の1.25倍以上かつパイルスタッド公称直径の1.5倍以上とする。 また、パイルスタッド中心とPC鋼材中心は20mm程度離す。

